blog bg left
Back to Blog

Running and Monitoring Distributed ML with Ray and whylogs

Running and monitoring distributed ML systems can be challenging. The need to manage multiple servers, and the fact that those servers emit different logs, means that there can be a lot of overhead involved in scaling up a distributed ML system. Fortunately, Ray makes parallelizing Python processes easy, and the open source whylogs enables users to monitor ML models in production, even if those models are running in a distributed environment.

Ray is an exciting project that allows you to parallelize pretty much anything written in Python. One of the advantages of the whylogs architecture is that it operates on mergeable profiles that can be easily generated in distributed systems and collected into a single profile downstream for analysis, enabling monitoring for distributed systems. This post will review some options that Ray users have for integrating whylogs into their architectures as a monitoring solution.

Continue reading on the Anyscale Ray Blog

Other posts

Get Early Access to the First Purpose-Built Monitoring Solution for LLMs

We’re excited to announce our private beta release of LangKit, the first purpose-built large language model monitoring solution! Join the responsible LLM revolution by signing up for early access.

Mind Your Models: 5 Ways to Implement ML Monitoring in Production

We’ve outlined five easy ways to monitor your ML models in production to ensure they are robust and responsible by monitoring for concept drift, data drift, data quality, AI explainability and more.

Simplifying ML Deployment: A Conversation with BentoML's Founder & CEO Chaoyu Yang

A summary of the live interview with Chaoyu Yang, Founder & CEO at BentoML, on putting machine learning models in production and BentoML's role in simplifying deployment.

Data Drift vs. Concept Drift and Why Monitoring for Them is Important

Data drift and concept drift are two common challenges that can impact ML models on production. In this blog, we'll explore the differences between these two types of drift and why monitoring for them is crucial.

Robust & Responsible AI Newsletter - Issue #5

Every quarter we send out a roundup of the hottest MLOps and Data-Centric AI news including industry highlights, what’s brewing at WhyLabs, and more.

Detecting Financial Fraud in Real-Time: A Guide to ML Monitoring

Fraud is a significant challenge for financial institutions and businesses. As fraudsters constantly adapt their tactics, it’s essential to implement a robust ML monitoring system to ensure that models effectively detect fraud and minimize false positives.

How to Troubleshoot Embeddings Without Eye-balling t-SNE or UMAP Plots

WhyLabs' scalable approach to monitoring high dimensional embeddings data means you don’t have to eye-ball pretty UMAP plots to troubleshoot embeddings!

Achieving Ethical AI with Model Performance Tracing and ML Explainability

With Model Performance Tracing and ML Explainability, we’ve accelerated our customers’ journey toward achieving the three goals of ethical AI - fairness, accountability and transparency.

Detecting and Fixing Data Drift in Computer Vision

In this tutorial, Magdalena Konkiewicz from Toloka focuses on the practical part of data drift detection and fixing it on a computer vision example.
pre footer decoration
pre footer decoration
pre footer decoration

Run AI With Certainty

Book a demo
loading...