Observability in Production: Monitoring Data Drift with WhyLabs and Valohai
- AI Observability
- ML Monitoring
- Integrations
- Whylogs
Dec 3, 2021
Imagine that magical day when your machine learning model is in production. It is possibly integrated into end-user applications, serving predictions and providing real-world value. As a Data Scientist, You may think that your job is done and that you can move on to the next problem to be solved. Unfortunately, the work is just getting started.
What works today might not work tomorrow. And when a model is in real-world use, serving the faulty predictions can lead to catastrophic consequences like what happened with Zillow and their iBuying algorithm which caused the company to overpay for real estate and ultimately, lay off 25% of their workforce.
...
We will dig into how we can easily get started with observability and detect data drift using whylogs while executing your pipeline on Valohai.
Continue reading on the Valohai Blog
Other posts
Best Practicies for Monitoring and Securing RAG Systems in Production
Oct 8, 2024
- Retrival-Augmented Generation (RAG)
- LLM Security
- Generative AI
- ML Monitoring
- LangKit
How to Evaluate and Improve RAG Applications for Safe Production Deployment
Jul 17, 2024
- AI Observability
- LLMs
- LLM Security
- LangKit
- RAG
- Open Source
WhyLabs Integrates with NVIDIA NIM to Deliver GenAI Applications with Security and Control
Jun 2, 2024
- AI Observability
- Generative AI
- Integrations
- LLM Security
- LLMs
- Partnerships
OWASP Top 10 Essential Tips for Securing LLMs: Guide to Improved LLM Safety
May 21, 2024
- LLMs
- LLM Security
- Generative AI
7 Ways to Evaluate and Monitor LLMs
May 13, 2024
- LLMs
- Generative AI
How to Distinguish User Behavior and Data Drift in LLMs
May 7, 2024
- LLMs
- Generative AI